198 research outputs found

    Universal relationship in gene-expression changes for cells in steady-growth state

    Full text link
    Cells adapt to different conditions by altering a vast number of components, which is measurable using transcriptome analysis. Given that a cell undergoing steady growth is constrained to sustain each of its internal components, the abundance of all the components in the cell has to be roughly doubled during each cell division event. From this steady-growth constraint, expression of all genes is shown to change along a one-parameter curve in the state space in response to the environmental stress. This leads to a global relationship that governs the cellular state: By considering a relatively moderate change around a steady state, logarithmic changes in expression are shown to be proportional across all genes, upon alteration of stress strength, with the proportionality coefficient given by the change in the growth rate of the cell. This theory is confirmed by transcriptome analysis of Escherichia Coli in response to several stresses.Comment: 7 pages (5 figures) + 2 Supplementary pages (figures

    Shape transformations of lipid vesicles by insertion of bulky-head lipids

    Get PDF
    Lipid vesicles, in particular Giant Unilamellar Vesicles (GUVs), have been increasingly important as compartments of artificial cells to reconstruct living cell-like systems in a bottom-up fashion. Here, we report shape transformations of lipid vesicles induced by polyethylene glycol-lipid conjugate (PEG lipids). Statistical analysis of deformed vesicle shapes revealed that shapes vesicles tend to deform into depended on the concentration of the PEG lipids. When compared with theoretically simulated vesicle shapes, those shapes were found to be more energetically favorable, with lower membrane bending energies than other shapes. This result suggests that the vesicle shape transformations can be controlled by externally added membrane molecules, which can serve as a potential method to control the replications of artificial cells

    Liposome-based liquid handling platform featuring addition, mixing, and aliquoting of femtoliter volumes

    Get PDF
    This paper describes the utilization of giant unilamellar vesicles (GUVs) as a platform for handling chemical and biochemical reagents. GUVs with diameters of 5 to 10 µm and containing chemical/biochemical reagents together with inert polymers were fused with electric pulses (electrofusion). After reagent mixing, the fused GUVs spontaneously deformed to a budding shape, separating the mixed solution into sub-volumes. We utilized a microfluidic channel and optical tweezers to select GUVs of interest, bring them into contact, and fuse them together to mix and aliquot the reaction product. We also show that, by lowering the ambient temperature close to the phase transition temperature Tm of the lipid used, daughter GUVs completely detached (fission). This process performs all the liquid-handing features used in bench-top biochemistry using the GUV, which could be advantageous for the membrane-related biochemical assays

    Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli

    Get PDF
    AbstractA significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system
    • …
    corecore